
The Virtual Cinematographer:
A Paradigm for Automatic Real-Time Camera Control and Directing

Li-wei He � Michael F. Cohen � David H. Salesin y

Microsoft Research Microsoft Research University of Washington
Abstract

This paper presents a paradigm for automatically generating com-
plete camera specifications for capturing events in virtual 3D en-
vironments in real-time. We describe a fully implemented system,
called the Virtual Cinematographer, and demonstrate its application
in a virtual “party” setting. Cinematographic expertise, in the form
of film idioms, is encoded as a set of small hierarchically organized
finite state machines. Each idiom is responsible for capturing a par-
ticular type of scene, such as three virtual actors conversing or one
actor moving across the environment. The idiom selects shot types
and the timing of transitions between shots to best communicate
events as they unfold. A set of camera modules, shared by the id-
ioms, is responsible for the low-level geometric placement of spe-
cific cameras for each shot. The camera modules are also respon-
sible for making subtle changes in the virtual actors’ positions to
best frame each shot. In this paper, we discuss some basic heuristics
of filmmaking and show how these ideas are encoded in the Virtual
Cinematographer.

CR Categories and Subject Descriptors: I.3.3 [Computer Graph-
ics]: Picture/Image Generation—viewing algorithms; I.3.6 [Com-
puter Graphics]: Methodology and Techniques—interaction tech-
niques.

Additional Keywords: cinematography, virtual worlds, virtual en-
vironments, screen acting, camera placement, hierarchical finite
state machines

1 Introduction

With the explosive growth of the internet, computers are increas-
ingly being used for communication and for play between multiple
participants. In particular, applications in which participants con-
trol virtual actors that interact in a simulated 3D world are becom-
ing popular. This new form of communication, while holding much
promise, also presents a number of difficulties. For example, partic-
ipants often have problems comprehending and navigating the vir-
tual 3D environment, locating other virtual actors with whom they
wish to communicate, and arranging their actors in such a way that
they can all see each other.

�Microsoft Research, One Microsoft Way, Seattle, WA 98052. Email:
fa-liweih mcoheng@microsoft.com

yDepartment of Computer Science and Engineering, University of Wash-
ington, Seattle, WA 98195. Email: salesin@cs.washington.edu
In fact, these same types of problems have been faced by cinematog-
raphers for over a century. Over the years, filmmakers have devel-
oped a set of rules and conventions that allow actions to be commu-
nicated comprehensibly and effectively. These visual conventions
are now so pervasive that they are essentially taken for granted by
audiences.

This paper addresses some of the problems of communicating in 3D
virtual environments by applying rules of cinematography. These
rules are codified as a hierarchical finite state machine, which is ex-
ecuted in real-time as the action unfolds. The finite state machine
controls camera placements and shot transitions automatically. It
also exerts subtle influences on the positions and actions of the vir-
tual actors, in much the same way that a director might stage real
actors to compose a better shot.

Automatic cinematography faces two difficulties not found in real-
world filmmaking. First, while informal descriptions of the rules of
cinematography are mentioned in a variety of texts [1, 13, 15], we
have not found a description that is explicit enough to be directly
encoded as a formal language. Second, most filmmakers work from
a script that is agreed upon in advance, and thus they have the op-
portunity to edit the raw footage as a post-process. In constrast, we
must perform the automatic camera control in real time. Thus, live
coverage of sporting events is perhaps a better analogy to the prob-
lem we address here, in that in neither situation is there any explicit
knowledge of the future, nor is there much opportunity for later edit-
ing.

In this paper, we discuss an implementation of a real-time camera
controller for automatic cinematography, called the Virtual Cine-
matographer (VC). We demonstrate its operation in the context of
a “virtual party,” in which actors can walk, look around, converse,
get a drink, and so on. The various actors are controlled either by
human users over a network, or by a party “simulator,” which can
control certain actors automatically. Each user runs his or her own
VC, which conveys the events at the party from the point of view of
that user’s actor, or “protagonist.”

The Virtual Cinematographer paradigm is applicable to a number of
different domains. In particular, a VC could be used in any applica-
tion in which it is possible to approximately predict the future ac-
tions of virtual “actors.” For example, in virtual reality games and
interactive fiction, the VC could be used to improve upon the fixed
point-of-view shots or ceiling-mounted cameras that such applica-
tions typically employ.

1.1 Related work

There are a number of areas in which related work has been ex-
plored. Karp and Feiner [11, 12] describe an animation-planning
system that can customize computer-generated presentations for a
particular viewer or situation. Sack and Davis [17] present the IDIC
system, which assembles short “trailers” from a library of Star Trek,
The Next Generation footage. Christianson et al. [3] have developed
an interactive story-telling system that plans a camera sequence
based on a simulated 3D animation script. All of these techniques

Copyright Notice
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.

line of interest

apex

A B

external internal external

Figure 1 (Adapted from figure 4.11 of [1].) Camera placement is
specified relative to “the line of interest.”

use an off-line planning approach to choose the sequence of camera
positions. In this paper, by contrast, we are concerned with real-time
camera placement as the interactively-controlled action proceeds.

A number of other systems concentrate on finding the best camera
placement when interactive tasks are performed [8, 14, 16]. In par-
ticular, Drucker et al. [4, 5, 6] show how to set up the optimal cam-
era positions for individual shots by solving small constrained opti-
mization problems. For efficiency reasons, in the real-time setting
we select shots from a small set of possible camera specifications so
that camera positions can be computed using closed-form methods.
The mathematics for defining low-level camera parameters, given
the geometry of the scene and the desired actor placements, is de-
scribed in a number of texts [7, 10]. We found Blinn’s treatment [2]
to be the most helpful single source.

2 Principles of cinematography

It is useful to consider a film as a hierarchy. At the highest level, a
film is a sequence of scenes, each of which captures a specific sit-
uation or action. Each scene, in turn, is composed of one or more
shots. A single shot is the interval during which the movie camera
is rolling continuously. Most shots generally last a few seconds, al-
though in certain cases they can go on much longer.

2.1 Camera placement

Directors specify camera placements relative to the line of interest,
an imaginary vector either connecting two actors, directed along the
line of an actor’s motion, or oriented in the direction that an actor is
facing. Common camera placements include external, internal, and
apex views, as shown in Figure 1.

Cinematographers have identified that certain cutting heights make
for pleasing compositions while others yield ugly results (e.g., an
image of a man cut off at the ankles). There are approximately five
useful camera distances [1]. An extreme closeup cuts at the neck; a
closeup cuts under the chest or at the waist; a medium view cuts at
the crotch or under the knees; a full view shows the entire person;
and a long view provides a distant perspective.

Individual shots also require subtly different placement of actors to
look natural on the screen. For example, the closeup of two actors
in Figure 2(a) looks perfectly natural. However, from a distance it
is clear that the actors are closer together than expected. Similarly,
shots with multiple actors often require shifting the actor positions
to properly frame them (Figure 2(b)).

2.2 Cinematographic heuristics and constraints

Filmmakers have articulated numerous heuristics for selecting good
shots and have informally specified constraints on successive shots
for creating good scenes. We have incorporated many of these
Bad

Good

(a) (b)

Figure 2 (Adapted from Tucker [18, pp. 33, 157].) Actor positions
that look natural for a particular closeup look too close together when
viewed from further back (a). Correctly positioning three actors for
a shot may require small changes in their positions (b).

heuristics in the design of the Virtual Cinematographer. Some ex-
amples are:

� Don’t cross the line: Once an initial shot is taken from the left or
right side of the line of interest, subsequent shots should remain
on that side. This rule ensures that successive shots of a moving
actor maintain the direction of apparent motion.

� Avoid jump cuts: Across the cut there should be a marked differ-
ence in the size, view, or number of actors between the two se-
tups. A cut failing to meet these conditions creates a jerky, sloppy
effect.

� Use establishing shots: Establish a scene before moving to close
shots. If there is a new development in the scene, the situation
must be re-established.

� Let the actor lead: The actor should initiate all movement, with
the camera following; conversely, the camera should come to rest
a little before the actor.

� Break movement: A scene illustrating motion should be broken
into at least two shots. Typically, each shot is cut so that the actor
appears to move across half the screen area.

A more complete survey of these heuristics can be found in Chris-
tianson et al. [3].

2.3 Sequences of shots

Perhaps the most significant invention of cinematographers is a col-
lection of stereotypical formulas for capturing specific scenes as se-
quences of shots. Traditional film books, such as The Grammar
of the Film Language by Arijon [1], provide an informal compila-
tion of formulas, along with a discussion of the various situations in
which the different formulas can be applied.

As an example, Figure 3 presents a four-shot formula that will serve
as an extended example throughout the remainder of this paper. The
formula provides a method for depicting conversations among three
actors. The first shot is an external shot over the shoulder of actor
C toward actors A and B. The second and third shots are external
shots of actorsA andB alone. The fourth shot is an internal reaction
shot of actor C. Arijon [1] stipulates that an editing order for a typ-
ical sequence using this setup would be to alternate between shots 1
and 4 while actors A and B talk to actor C. When A and B begin
to talk to each other, the sequence shifts to an alternation between
shots 2 and 3, with an occasional reaction shot 4. Shot 1 should be
introduced every now and then to re-establish the whole group.

33
33

33
33

33
33

1

2

3

4
C

A

B

Figure 3 (Adapted from Figure 6.29 of Arijon [1].) A common for-
mula for depicting a conversation among three actors.

The particular formulas prefered by any individual director lend a
certain flavor or style to that director’s films. In the Virtual Cin-
ematographer, the style is dictated by the particular formulas en-
coded. (In fact, as each of the authors of this paper worked on the
VC, a slightly different style emerged for each one.)

3 The Virtual Cinematographer

The Virtual Cinematographer is one part of the overall architecture
shown in Figure 4. The other two parts consist of the real-time ap-
plication and the renderer. The real-time application supplies the
renderer with any static geometry, material properties, and lights.
At each time tick (i.e., at each frame of the resulting animation), the
following events occur:

1. The real-time application sends the VC a description of events
that occur in that tick and are significant to the protagonist.
Events are of the form (subject, verb, object). The subject is al-
ways an actor, while the object may be an actor, a current con-
versation (comprising a group of actors), a fixed object (e.g., the
bar), or null.

2. The VC uses the current events plus the existing state of the an-
imation (e.g., how long the current shot has lasted) to produce
an appropriate camera specification that is output to the renderer.
The VC may query the application for additional information,
such as the specific locations and bounding boxes of various ac-
tors. The VC may also make subtle changes in the actors’ po-
sitions and motion, called acting hints. These are also output to
the renderer.

3. The scene is rendered using the animation parameters and de-
scription of the current environment sent by the application, and
the camera specification and acting hints sent by the VC.

3.1 The VC architecture

The cinematography expertise encoded in the Virtual Cinematogra-
pher is captured in two main components: camera modules and id-
ioms (see Figure 5). Camera modules implement the different cam-
era placements described in Section 2.1. Idioms describe the formu-
las used for combining shots into sequences, as described in Sec-
tion 2.3. The idioms are organized hierarchically, from more gen-
eral idioms near the top, to idioms designed to capture increasingly
specific situations. This structure allows each idiom to simply re-
Virtual
Cinematographer

Renderer

Real−time
application

events, geometric
information

queries

camera , acting hints

animation parameters,
static geometry, actor
models, lights, etc.

Figure 4 System including the Virtual Cinematographer.

...

...

Converse

3Talk 2Talk

Master

ext1to2 internal external group fixed

Move...

Idioms

Camera Modules

...

Figure 5 The Virtual Cinematographer structure.

turn control back to a more general idiom when unforseen events
are encountered.

3.2 Camera modules

Each camera module takes as input a number of actors, called pri-
mary actors; the exact number depends on the particular camera
module. Each camera module automatically positions the camera so
as to place the actors at particular locations on the screen and allow
for pleasing cutting heights. In addition, the camera module may
decide to reposition the actors slightly to improve the shot. Finally,
the camera placement is automatically chosen so as to not cross the
line of interest.

3.2.1 Example camera modules

Sixteen different camera modules have been implemented, several
of which are shown in Figure 6. The most heavily used camera mod-
ules include:

� apex(actor1, actor2): The apex camera module takes two ac-
tors as input and places the camera so that the first actor is cen-
tered on one side of the screen and the second actor is centered on
the other. The camera distance is thus a function of the distance
between the two actors.

� closeapex(actor1, actor2): This camera module also imple-
ments an apex camera placement. However, it differs from the
previous camera module in that it always uses a close-up camera
distance. To compose a more pleasing shot, this camera module
may move the actors closer together, as discussed in Section 2.1
and illustrated by A0 and B0 in Figure 6.

� external(actor1, actor2): The external camera module
takes as input two actors and places the camera so that the first
actor is seen over the shoulder of the second actor, with the first
actor occupying two-thirds of the screen and the second actor the
other third.

� internal(actor1, [actor2]): The internal camera module
places the camera along the same line of sight as the external
camera module, but closer in and with a narrower field of view,
so that only the first actor is seen. If only one actor is specified,

line of interest

external(B,A)

other instance of external(B,A)

BA

internal(B,A)

BA

A’ B’

apex(B,A)

closeapex(B,A)

1
2

follow(A,B)pan(A,B)track(A,B)

A A AB B B

Figure 6 Some camera modules.

then the line of interest is taken to be along the direction the actor
is facing.

� ext1to2(actor1, actor2, actor3): This camera module imple-
ments an external camera placement between one actor and two
others. It places the camera so that the first two actors are seen
over the shoulder of the third actor, with the first two actors oc-
cupying two-thirds of the screen, and the third actor the rest of
the screen (see camera 1 in Figure 3). This camera module may
also sometimes perturb the actors’ positions to compose a better
shot.

� ftrack pan followg(actor1, actor2, mindist, maxdist):
These three related camera modules are used when actor1 is mov-
ing (Figure 6). They differ from the preceding modules in that
they define a moving camera that dynamically changes position
and/or orientation to hold the actor’s placement near the center of
the screen. The track camera sets the camera along a perpen-
dicular from the line of interest and then moves with the actor,
maintaining the same orientation. The panmodule sets itself off
the line of interest ahead of the actor and then pivots in place to
follow the motion of the actor. The follow module combines
these two operations. It first behaves like a panning camera, but
as the actor passes by it begins to “follow” the actor from behind
rather than allowing the actor to move off into the distance.

� fixed(cameraspec): This camera module is used to specify a
particular fixed location, orientation, and field of view. We use it
in our application to provide an overview shot of the scene.

� null(): This camera module leaves the camera in its previous
position.

3.2.2 Respecting the line of interest

Recall that the line of interest is defined relative to the two actors
in a shot. Most of the camera modules can choose one of two in-
stances, corresponding to symmetric positions on opposite sides of
the line of interest (Figure 6). The rules of cinematography dictate
that when the line of interest remains constant, the camera should re-
main on the same side of the line. When the line of interest changes,
for example, when one of the two actors in the shot changes position,
the choice is not as well defined. We have found that a good rule is
to choose the instance in which the camera orientation with respect
to the new line of interest is closest to the orientation of the previous
shot.
3.2.3 Influencing the acting

The camera modules are also able to subtly improve a shot by in-
fluencing the positions of the actors in the scene. Since the real-
time application is primarily in charge of manipulating the actors,
the changes made by the VC must be subtle enough to not disturb
the continuity between shots (Figure 10).

For example, the closeapex camera module moves the two pri-
mary actors closer together if their distance is greater than some
minimum, as in Figure 6. The ext1to2 camera module adjusts
the positions of the three primary actors so that no actor is obscured
by any other in the shot. Some camera modules remove actors al-
together from the scene, to avoid situations in which an actor ap-
pears only part-way on screen or occludes another primary actor in
the scene. For example, the internal camera module removes
the second actor from the scene.

3.2.4 Detecting occlusion

Camera modules are also responsible for detecting when one or
more of the primary actors becomes occluded in the scene. In the
case of occlusion, at each time tick, the camera module increments
an occlusion counter, or resets the counter to zero if the occluded
actors become unoccluded. This counter can be used by the idioms
to decide whether to change to a different shot.

3.3 Idioms

At the core of the Virtual Cinematographer is the film idiom. A sin-
gle idiom encodes the expertise to capture a particular type of situ-
ation, such as a conversation between two actors, or the motion of
a single actor from one point to another. The idiom is responsible
for deciding which shot types are appropriate and under what condi-
tions one shot should transition to another. The idiom also encodes
when the situation has moved outside the idiom’s domain of exper-
tise — for example, when a third actor joins a two-person conver-
sation.

In the VC, an idiom is implemented as a hierarchical finite state ma-
chine (FSM) [9]. Each state invokes a particular camera module.
Thus, each state corresponds to a separate shot in the animation be-
ing generated. Each state also includes a list of conditions, which,
when satisfied, cause it to exit along a particular arc to another state.
Thus, a cut is implicitly generated whenever an arc in the FSM is tra-
versed to a state that uses a different camera module. The FSM’s are
hierarchically arranged through call/return mechanisms.

We will introduce the concepts involved in constructing idioms by
way of examples. In the first example, we construct an idiom for
depicting a conversation between two actors, called 2Talk. In the
second example, we use this idiom as a primitive in building a more
complex idiom, called 3Talk, for depicting a conversation among
three actors.

3.3.1 The 2Talk idiom

The 2Talk idiom (Figure 7) encodes a simple method for filming
two actors as they talk and react to each other. It uses only external
shots of the two actors. The 2Talk procedure takes as parameters
the two actors A and B who are conversing. It has four states. The
first state uses an external camera module, which shows A talk-
ing to B. The second state is used for the opposite situation, when
B talks to A. The third and fourth states use external camera place-
ments to capture reaction shots of each of the actors.

When the idiom is activated, it follows one of two initial arcs that
originate at the small circle in the diagram of Figure 7, called the

1
external(A,B)

2
external(B,A)

3
external(A,B)

4
external(B,A)

Figure 7 The 2Talk idiom.

entry point. The arc to be used is determined by the following code:

DEFINE_IDIOM_IN_ACTION(2Talk)
WHEN (talking(A, B))

DO (GOTO (1);)
WHEN (talking(B, A))

DO (GOTO (2);)
END_IDIOM_IN_ACTION

This code, like the rest of the code in this paper, is actual C++
code, rather than pseudocode. The keywords written in all-caps are
macros that are expanded by the C preprocessor. This code tests
whether A is talking to B, or B is talking to A, and transitions im-
mediately to the appropriate state, in this case, either 1 or 2, respec-
tively.

As a state is entered, it first executes a set of in-actions. The in-
actions are often null, as is the case for all of the states in the 2Talk
idiom. Once the state is entered, the state’s camera module is called
to position the camera. The state then executes a sequence of actions
at every clock tick. The actions can be used to affect conditional
transitions to other states. Finally, when exiting, the state executes
a set of out-actions, again, often null.

In the 2Talk idiom, the camera modules are defined as follows:

DEFINE_SETUP_CAMERA_MODULES(2Talk)
MAKE_MODULE(1, external, (A, B))
MAKE_MODULE(2, external, (B, A))
LINK_MODULE(1, 1, "A talks")
LINK_MODULE(2, 2, "B talks")
LINK_MODULE(3, 1, "A reacts")
LINK_MODULE(4, 2, "B reacts")

END_SETUP_CAMERA_MODULES

MAKE MODULE(module id, type, parameter list) creates a new cam-
era module of the designated type with the specified parameters and
gives it an identifying number. LINK MODULE(state id, module id,
name) associates the specified camera module with the specified
state. Thus for example, whenever state 1 is entered, an external
shot of actor A over the shoulder of actor B will be used.

The first action code to be executed in each state is specified in a
block common to all states, called the common actions. This is pri-
marily a shorthand mechanism to avoid having to respecify the same
(condition, arc) pairs in each state of the idiom. The common ac-
tions in the 2Talk idiom are:

DEFINE_STATE_ACTIONS(COMMON)
WHEN (T < 10)

DO (STAY;)
WHEN (!talking(A, B) && !talking(B, A))

DO (RETURN;)
END_STATE_ACTIONS

The first statement checks to see whether the total timeT spent so far
in this state is less than 10 ticks; if so, the current state remains un-
changed. (However, an exception mechanism takes precedence and
may in fact pre-empt the shot, as discussed in Section 3.3.2.) If the
shot has lasted at least 10 ticks, but A and B are no longer conversing,
then the idiom should return to the idiom that called it. The action
statements are evaluated sequentially. Thus, earlier statements take
precedence over statements listed later in the code.

The variable T is a global variable, which is accessible to any state.
There are several other global variables that can be used in state ac-
tions:

� Occluded, the number of consecutive ticks that one or more of
the primary actors has been occluded;

� IdiomT, the total number of ticks spent so far in this idiom;

� D[A,B], the distance between the actors (measured in units of
“head diameters”);

� forwardedge[x], rearedge[x], centerline[x], the
edges of the bounding box of actor x, relative to the screen coor-
dinates.

There are also a number of predefined control structures:

� STAY, remain in the same state for another tick;

� GOTO(x), transition to state x;

� RETURN, return to the parent state;

� CALL(idiom, parameter list), execute the specified idiom by
passing it the specified list of parameters.

Finally, the actions code above makes use of a domain-specific sub-
routine called talking(A,B), which returns true if and only if
the current list of events includes (A,talk,B).

State1 of the 2Talk idiom is used to depict actorA talking toB. In
addition to the common actions, the list of actions executed at each
clock tick when in state 1 are:

DEFINE_STATE_ACTIONS(1)
WHEN (talking(B, A))

DO (GOTO (2);)
WHEN (T > 30)

DO (GOTO (4);)
END_STATE_ACTIONS

If B is now talking to A, then a transition to state 2 is required to
capture this situation. Otherwise, if an actor has been in the same
shot for more than 30 ticks, there should be a transition to state 4 to
get a reaction shot from the other actor.

State 2, which addresses the case of actor B talking to actor A, is
completely symmetric: the code is exactly the same except that A
and B are swapped and states 1 and 3 are used in place of states 2
and 4.

For completeness, the action code for state 3 is shown below:

DEFINE_STATE_ACTIONS(3)
WHEN (talking(A, B))

DO (GOTO (1);)
WHEN (talking(B, A) T > 15)

DO (GOTO (2);)
END_STATE_ACTIONS

Note that this state can make a transition back to state 1, which uses
the same camera module as is used here in state 3. In this case, the
two shots are really merged into a single shot without any cut. Fi-
nally, state 4 is symmetric to state 3 in the same way that state 2 is
symmetric to state 1.

4a
internal(c)

1
ext1to2(A,B,C)

2and3
CALL 2Talk(A,B)

4b
internal(c)

Figure 8 The 3Talk idiom.

Since the out-actions for 2Talk are null, we have now completely
described the 2Talk idiom. The next section shows how 2Talk
can be used as a subroutine for a higher-level idiom that handles con-
versations among three actors.

3.3.2 The 3Talk idiom

The finite state machine for 3Talk, which handles conversations
among three actors, is shown in Figure 8. This idiom implements
the cinematic treatment of three actors sketched in Figure 3 and il-
lustrated in Figure 10. The 3Talk FSM has the same types of com-
ponents as 2Talk: it has states and arcs representing transitions be-
tween states. In addition, this FSM also uses the exception mecha-
nism, as discussed below.

The idiom has four states. The first state, labeled 1, is an establish-
ing shot of all three actors, corresponding to the first camera posi-
tion in Figure 8 and the second shot in Figure 10. The second state,
labeled 2and3, is a parent state that calls the 2Talk idiom, corre-
sponding to cameras 2 and 3 in Figure 3. Finally, the last two states,
labeled 4a and 4b, capture the reaction shot of the first actor; these
two states correspond to camera 4 of Figure 3.

All four states have actions that are similar to the ones described
in 2Talk. The two states 4a and 4b have been implemented as
separate states because they function differently in the idiom, even
though they both shoot the scene from the same camera. State 4a
is used in the opening sequence or after a new establishing shot, al-
lowing shots of all three actors to be alternated with reaction shots
of actor C. By contrast, state 4b is used only after a two-way con-
versation between actors A and B has been established, in this case
to get an occasional reaction shot of actor C and then quickly return
to the two-way conversation between A and B.

The one state that differs significantly from the states considered
earlier is the state labeled 2and3. First, unlike the previous states,
state 2and3 does have in-actions:

DEFINE_STATE_IN_ACTION(2and3)
REG_EXCEPTION(left_conv, C, LEFT_CONV);
REG_EXCEPTION(too_long, 100, TOO_LONG);
REG_EXCEPTION(reacts, C, GET_REACTION);
CALL(2Talk, (A, B));

END_STATE_IN_ACTION

These in-actions set up a number of exceptions, which, when raised,
will cause a child idiom to exit, returning control to the parent
state. Each REG EXCEPTION command takes three parameters:
the name of a function to call to test whether or not the exception
should be raised; an arbitrary set of parameters that are passed to
that function; and the exception name, which is an enumerated type.
The final in-action of state 2and3 calls the 2Talk idiom, passing
it actors A and B as parameters. The 2Talk idiom is then executed
at once. All of the exceptions are implicitly tested before the actions
in every state of the child idiom are executed.
The 2Talk idiom will return either when it executes a RETURN in
one of its actions or when one of the exceptions is raised. In either
case, control is returned to the parent state at that point, and its ac-
tions are executed. The actions for state 2and3 are:

DEFINE_STATE_ACTIONS(2and3)
WHEN(EXCEPTION_RAISED(LEFT_CONV))

DO(GOTO(1);)
WHEN(EXCEPTION_RAISED(TOO_LONG))

DO(GOTO(1);)
OTHERWISE

DO(GOTO(4b);)
END_STATE_ACTION

If either the LEFT CONV or TOO LONG exception has been raised,
then a transition is made back to state 1 to get another establishing
shot. Otherwise, a transition is made to get a reaction shot.

The out-actions of state 2and3, evaluated just before the transition
to the new state is made, are used to remove the exceptions that were
set up by the in-actions:

DEFINE_STATE_OUT_ACTION(2and3)
DELETE_EXCEPTION(LEFT_CONV);
DELETE_EXCEPTION(TOO_LONG);
DELETE_EXCEPTION(GET_REACTION);

END_STATE_OUT_ACTION

3.3.3 Idioms for movement

Capturing screen motion (Figure 9) presents special problems.
In particular, it may be desirable to end a shot not only when
an event is triggered by the real-time system, but also when
an actor reaches a certain position on the screen (such as the
edge of the screen). The global variables forwardedge[x],
rearedge[x], centerline[x] are used to facilitate these
kinds of tests. These variables are measured in a screen-coordinate
system of the actor, which is set up relative to the orientation of
each actor x. The edge of the screen that the actor is facing is
defined to be at +1, and the edge to the actor’s rear, �1. The
center line of the screen is at 0. Thus, for example, a state can
see if actor x has just reached the edge of the screen by testing
whether forwardedge[x] is greater than 1. It can test whether
the actor has walked completely off the screen by testing whether
rearedge[x] is greater than 1.

4 The “Party” application

For illustration, the Virtual Cinematographer has been applied to a
simulated “party” environment. The party application runs over a
network, so that multiple participants can interact in a single virtual
environment. Each participant controls a different actor (their pro-
tagonist) at the party. The actors can walk, look around, converse
with each other, or go to the bar where they can drink and talk to the
bartender.

The user interface allows the user to invoke (verb, object) pairs,
which are translated into (subject, verb, object) triples in which the
protagonist is the subject. Current verbs include talk, react, goto,
drink, lookat, and idle. Each invocation of a verb causes a change
in the action of the protagonist shortly after the corresponding but-
ton is pushed.

An additional interface button allows the actors who stand alone or
in a conversation to “vote” on whether to accept or reject a new actor
signaling to join in the conversation. The signal verb is implicitly
generated when an actor approaches within a short distance of the
object of the goto verb.

At each time tick, the party application running on each client work-
station sends an update of the current actions of that client’s protag-
onist to a server. The server then broadcasts a list of (subject, verb,
object) triples of interest to each protagonist’s private VC. Triples
of interest are those involving the protagonist (or others in the same
conversation as the protagonist) as subject or object. The party ap-
plication is responsible for all low-level motion of the actors, includ-
ing walking, mouth movements, head turning, etc.

5 Results

The party application, renderer, and Virtual Cinematographer run
on a Pentium PC. They are implemented in Visual C++, except for
the user interface code, which is written in Visual Basic. The ren-
derer uses RendermorphicsR to generate each frame. The full sys-
tem runs at a rate of approximately 5 ticks per second, of which the
majority of time is spent in the renderer.

Figures 9 and 10 depict the Moving idiom in action and the hier-
archy of Converse, 3Talk, and 2Talk. Individual frames are
shown on the left, with a corresponding shot from above on the right
(which includes the camera itself circled in black.) In Figure 10, the
arcs are labeled with the condition causing a transition to occur be-
tween states. (Heavy lines indicate the path taken through the idiom.
Dotted lines indicate jumps between idioms caused by the calling
and exception mechanisms.)

Figure 10 depicts the use of the hierarchy of film idioms. The se-
quence begins in the generic Converse idiom, which specifies the
group shot. The converse idiom then calls 3Talk, which follows
an ext1to2 shot by calling 2Talk. Eventually 2Talk is inter-
rupted by an exception and by the 3Talk idiom. Note the subtle
rearrangement of the characters and the removal of extraneous char-
acters in the 3Talk idiom.

6 Conclusion and future work

This paper has described a Virtual Cinematographer whose archi-
tecture is well suited to a number of real-time applications involv-
ing virtual actors. The VC has been demonstrated in the context of
a networked “virtual party” application. By encoding expertise de-
veloped by real filmmakers into a hierarchical finite state machine,
the VC automatically generates camera control for individual shots
and sequences these shots as the action unfolds.

There are a number of areas for future work. Although the camera
modules have proved quite robust, they can fail for a few frames due
to unexpected occlusions, or they may miss a critical action due to
minimum-length shot constraints. Some of these issues can be re-
solved by redesigning the idioms in the current structure. We are
also looking into incorporating simple constraint solvers, such as the
ones proposed by Drucker [4, 5, 6] and Gleicher and Witkin [8]. In
addition, we would like to expand the input to the VC to include such
ancillary information as the emotional state of the scene or of indi-
vidual actors. For example, if the situation is tense, faster cuts might
be made, or if one actor is scared, the camera might be lowered to
give the other actors a looming appearance. We would also like to
apply similar rules for automatically lighting the scenes and actors
in a cinematographic style.

Acknowledgements

We would like to thank Daniel Weld and Sean Anderson for their
significant contributions during an earlier phase of this work. We
would also like to thank Jutta M. Joesch for her help in editing the
paper.
References

[1] Daniel Arijon. Grammar of the Film Language. Communication Arts
Books, Hastings House, Publishers, New York, 1976.

[2] James Blinn. Where am I? What am I looking at? IEEE Computer
Graphics and Applications, pages 76–81, 1988.

[3] David B. Christianson, Sean E. Anderson, Li-wei He, David H.
Salesin, Daniel S. Weld, and Michael F. Cohen. Declarative camera
control for automatic cinematography. In Proceedings of the AAAI-96,
August 1996.

[4] Steven M. Drucker, Tinsley A. Galyean, and David Zeltzer. CINEMA:
A system for procedural camera movements. In David Zeltzer, edi-
tor, Computer Graphics (1992 Symposium on Interactive 3D Graph-
ics), volume 25, pages 67–70, March 1992.

[5] Steven M. Drucker and David Zelter. CamDroid: A system for imple-
menting intelligent camera control. In Michael Zyda, editor, Computer
Graphics (1995 Symposium on Interactive 3D Graphics), volume 28,
pages 139–144, April 1995.

[6] Steven M. Drucker and David Zeltzer. Intelligent camera control in a
virtual environment. In Proceedings of Graphics Interface ’94, pages
190–199, Banff, Alberta, Canada, May 1994. Canadian Information
Processing Society.

[7] James D. Foley, Andries van Dam, Steven K. Feiner, and John F.
Hughes. Computer Graphics, Principles and Practice. Addison-
Wesley Publishing Company, Reading, Massachusetts, second edition,
1990.

[8] Michael Gleicher and Andrew Witkin. Through-the-lens camera con-
trol. In Edwin E. Catmull, editor, Computer Graphics (SIGGRAPH
’92 Proceedings), volume 26, pages 331–340, July 1992.

[9] David Harel. Statecharts: A visual formalism for complex systems.
Science of Computer Programming, pages 231–274, 1987.

[10] Donald Hearn and M. Pauline Baker. Computer Graphics. Prentice
Hall, Englewood Cliffs, New Jersey, second edition, 1994.

[11] Peter Karp and Steven Feiner. Issues in the automated generation of an-
imated presentations. In Proceedings of Graphics Interface ’90, pages
39–48, May 1990.

[12] Peter Karp and Steven Feiner. Automated presentation planning of
animation using task decomposition with heuristic reasoning. In Pro-
ceedings of Graphics Interface ’93, pages 118–127, Toronto, Ontario,
Canada, May 1993. Canadian Information Processing Society.

[13] Christopher Lukas. Directing for Film and Television. Anchor
Press/Doubleday, Garden City, N.Y., 1985.

[14] Jock D. Mackinlay, Stuart K. Card, and George G. Robertson. Rapid
controlled movement through a virtual 3D workspace. In Forest Bas-
kett, editor, Computer Graphics (SIGGRAPH ’90 Proceedings), vol-
ume 24, pages 171–176, August 1990.

[15] Joseph V. Mascelli. The Five C’s of Cinematography. Cine/Grafic Pub-
lications, Hollywood, 1965.

[16] Cary B. Phillips, Norman I. Badler, and John Granieri. Automatic
viewing control for 3D direct manipulation. In David Zeltzer, editor,
Computer Graphics (1992 Symposium on Interactive 3D Graphics),
volume 25, pages 71–74, March 1992.

[17] Warren Sack and Marc Davis. IDIC: Assembling video sequences
from story plans and content annotations. In IEEE International Con-
ference on Multimedia Computing and Systems, Boston, MA, May
1994.

[18] Patrick Tucker. Secrets of Screen Acting. Routledge, New York, 1994.

Moving

Converse

3Talk

2Talk

Call 3Talk(A,B,C)

Call 2Talk(A,B)

Figure 10: Idiom HierarchyFigure 9: Idiom State Transitions

external(B,A)

T>8

T>8
T>12

T>12

D<10
D<10

D<5

external(A,B)

apex(A,B)

pan(A) track(A)

apex(A,B)

ext1to2(A,B,C)

group(A,B,C)

external(B,A) external(A,B)

internal(C)

